Copied to
clipboard

G = C2xC23.32C23order 128 = 27

Direct product of C2 and C23.32C23

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2xC23.32C23, C22.12C25, C42.534C23, C23.106C24, C24.604C23, C22.712- 1+4, C2.8(C24xC4), C4.38(C23xC4), (C4xQ8):81C22, (C22xQ8):24C4, C4:C4.513C23, (C2xC4).158C24, Q8.24(C22xC4), (Q8xC23).13C2, C22.19(C23xC4), (C2xQ8).479C23, C2.1(C2x2- 1+4), C22:C4.125C23, C23.234(C22xC4), (C23xC4).576C22, (C2xC42).912C22, (C22xC4).1293C23, (C22xQ8).481C22, C42:C2.335C22, (C2xC4xQ8):41C2, Q8o(C2xC22:C4), C22:C4o2(C2xQ8), (C2xQ8):43(C2xC4), (C2xC4:C4).982C22, (C2xC4).282(C22xC4), (C22xC4).372(C2xC4), (C2xC42:C2).61C2, (C2xC22:C4).561C22, SmallGroup(128,2158)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C2xC23.32C23
C1C2C22C23C24C23xC4Q8xC23 — C2xC23.32C23
C1C2 — C2xC23.32C23
C1C23 — C2xC23.32C23
C1C22 — C2xC23.32C23

Generators and relations for C2xC23.32C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=g2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, ebe-1=bc=cb, bd=db, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, gfg-1=cf=fc, cg=gc, de=ed, df=fd, dg=gd, eg=ge >

Subgroups: 796 in 744 conjugacy classes, 692 normal (7 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2xC4, C2xC4, Q8, C23, C23, C23, C42, C22:C4, C4:C4, C22xC4, C2xQ8, C24, C2xC42, C2xC22:C4, C2xC4:C4, C42:C2, C4xQ8, C23xC4, C22xQ8, C2xC42:C2, C2xC4xQ8, C23.32C23, Q8xC23, C2xC23.32C23
Quotients: C1, C2, C4, C22, C2xC4, C23, C22xC4, C24, C23xC4, 2- 1+4, C25, C23.32C23, C24xC4, C2x2- 1+4, C2xC23.32C23

Smallest permutation representation of C2xC23.32C23
On 64 points
Generators in S64
(1 49)(2 50)(3 51)(4 52)(5 37)(6 38)(7 39)(8 40)(9 29)(10 30)(11 31)(12 32)(13 17)(14 18)(15 19)(16 20)(21 25)(22 26)(23 27)(24 28)(33 63)(34 64)(35 61)(36 62)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(2 20)(4 18)(6 62)(8 64)(10 56)(12 54)(14 52)(16 50)(22 60)(24 58)(26 48)(28 46)(30 44)(32 42)(34 40)(36 38)
(1 19)(2 20)(3 17)(4 18)(5 61)(6 62)(7 63)(8 64)(9 55)(10 56)(11 53)(12 54)(13 51)(14 52)(15 49)(16 50)(21 59)(22 60)(23 57)(24 58)(25 47)(26 48)(27 45)(28 46)(29 43)(30 44)(31 41)(32 42)(33 39)(34 40)(35 37)(36 38)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 19 21)(2 22 20 60)(3 57 17 23)(4 24 18 58)(5 43 61 29)(6 30 62 44)(7 41 63 31)(8 32 64 42)(9 37 55 35)(10 36 56 38)(11 39 53 33)(12 34 54 40)(13 27 51 45)(14 46 52 28)(15 25 49 47)(16 48 50 26)
(1 55 19 9)(2 56 20 10)(3 53 17 11)(4 54 18 12)(5 25 61 47)(6 26 62 48)(7 27 63 45)(8 28 64 46)(13 31 51 41)(14 32 52 42)(15 29 49 43)(16 30 50 44)(21 35 59 37)(22 36 60 38)(23 33 57 39)(24 34 58 40)

G:=sub<Sym(64)| (1,49)(2,50)(3,51)(4,52)(5,37)(6,38)(7,39)(8,40)(9,29)(10,30)(11,31)(12,32)(13,17)(14,18)(15,19)(16,20)(21,25)(22,26)(23,27)(24,28)(33,63)(34,64)(35,61)(36,62)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (2,20)(4,18)(6,62)(8,64)(10,56)(12,54)(14,52)(16,50)(22,60)(24,58)(26,48)(28,46)(30,44)(32,42)(34,40)(36,38), (1,19)(2,20)(3,17)(4,18)(5,61)(6,62)(7,63)(8,64)(9,55)(10,56)(11,53)(12,54)(13,51)(14,52)(15,49)(16,50)(21,59)(22,60)(23,57)(24,58)(25,47)(26,48)(27,45)(28,46)(29,43)(30,44)(31,41)(32,42)(33,39)(34,40)(35,37)(36,38), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,19,21)(2,22,20,60)(3,57,17,23)(4,24,18,58)(5,43,61,29)(6,30,62,44)(7,41,63,31)(8,32,64,42)(9,37,55,35)(10,36,56,38)(11,39,53,33)(12,34,54,40)(13,27,51,45)(14,46,52,28)(15,25,49,47)(16,48,50,26), (1,55,19,9)(2,56,20,10)(3,53,17,11)(4,54,18,12)(5,25,61,47)(6,26,62,48)(7,27,63,45)(8,28,64,46)(13,31,51,41)(14,32,52,42)(15,29,49,43)(16,30,50,44)(21,35,59,37)(22,36,60,38)(23,33,57,39)(24,34,58,40)>;

G:=Group( (1,49)(2,50)(3,51)(4,52)(5,37)(6,38)(7,39)(8,40)(9,29)(10,30)(11,31)(12,32)(13,17)(14,18)(15,19)(16,20)(21,25)(22,26)(23,27)(24,28)(33,63)(34,64)(35,61)(36,62)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (2,20)(4,18)(6,62)(8,64)(10,56)(12,54)(14,52)(16,50)(22,60)(24,58)(26,48)(28,46)(30,44)(32,42)(34,40)(36,38), (1,19)(2,20)(3,17)(4,18)(5,61)(6,62)(7,63)(8,64)(9,55)(10,56)(11,53)(12,54)(13,51)(14,52)(15,49)(16,50)(21,59)(22,60)(23,57)(24,58)(25,47)(26,48)(27,45)(28,46)(29,43)(30,44)(31,41)(32,42)(33,39)(34,40)(35,37)(36,38), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,19,21)(2,22,20,60)(3,57,17,23)(4,24,18,58)(5,43,61,29)(6,30,62,44)(7,41,63,31)(8,32,64,42)(9,37,55,35)(10,36,56,38)(11,39,53,33)(12,34,54,40)(13,27,51,45)(14,46,52,28)(15,25,49,47)(16,48,50,26), (1,55,19,9)(2,56,20,10)(3,53,17,11)(4,54,18,12)(5,25,61,47)(6,26,62,48)(7,27,63,45)(8,28,64,46)(13,31,51,41)(14,32,52,42)(15,29,49,43)(16,30,50,44)(21,35,59,37)(22,36,60,38)(23,33,57,39)(24,34,58,40) );

G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,37),(6,38),(7,39),(8,40),(9,29),(10,30),(11,31),(12,32),(13,17),(14,18),(15,19),(16,20),(21,25),(22,26),(23,27),(24,28),(33,63),(34,64),(35,61),(36,62),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(2,20),(4,18),(6,62),(8,64),(10,56),(12,54),(14,52),(16,50),(22,60),(24,58),(26,48),(28,46),(30,44),(32,42),(34,40),(36,38)], [(1,19),(2,20),(3,17),(4,18),(5,61),(6,62),(7,63),(8,64),(9,55),(10,56),(11,53),(12,54),(13,51),(14,52),(15,49),(16,50),(21,59),(22,60),(23,57),(24,58),(25,47),(26,48),(27,45),(28,46),(29,43),(30,44),(31,41),(32,42),(33,39),(34,40),(35,37),(36,38)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,19,21),(2,22,20,60),(3,57,17,23),(4,24,18,58),(5,43,61,29),(6,30,62,44),(7,41,63,31),(8,32,64,42),(9,37,55,35),(10,36,56,38),(11,39,53,33),(12,34,54,40),(13,27,51,45),(14,46,52,28),(15,25,49,47),(16,48,50,26)], [(1,55,19,9),(2,56,20,10),(3,53,17,11),(4,54,18,12),(5,25,61,47),(6,26,62,48),(7,27,63,45),(8,28,64,46),(13,31,51,41),(14,32,52,42),(15,29,49,43),(16,30,50,44),(21,35,59,37),(22,36,60,38),(23,33,57,39),(24,34,58,40)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4BD
order12···222224···4
size11···122222···2

68 irreducible representations

dim1111114
type+++++-
imageC1C2C2C2C2C42- 1+4
kernelC2xC23.32C23C2xC42:C2C2xC4xQ8C23.32C23Q8xC23C22xQ8C22
# reps168161324

Matrix representation of C2xC23.32C23 in GL6(F5)

100000
040000
004000
000400
000040
000004
,
400000
040000
001000
000100
000040
000004
,
100000
010000
004000
000400
000040
000004
,
400000
040000
001000
000100
000010
000001
,
300000
020000
000010
000001
001000
000100
,
400000
040000
000200
002000
000003
000030
,
100000
010000
000100
004000
000001
000040

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;

C2xC23.32C23 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{32}C_2^3
% in TeX

G:=Group("C2xC2^3.32C2^3");
// GroupNames label

G:=SmallGroup(128,2158);
// by ID

G=gap.SmallGroup(128,2158);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,448,477,232,387,184,1123]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=g^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*b*e^-1=b*c=c*b,b*d=d*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,g*f*g^-1=c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*g=g*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<